博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Acceleration for ML 论文导读
阅读量:5310 次
发布时间:2019-06-14

本文共 1273 字,大约阅读时间需要 4 分钟。

Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA

Motivation

To address the slow operation and high energy and resource consumption problem caused by realizing spiking neural network (SNN) using software.

Problem

  1. software : slow operation, high energy consumption and space resources
  2. analog circuits: hard to reconfigure and intrinsically sensitive to process, voltage and temperature (PVT) Var.
  3. FPGA: most of works focus on the acceleration of SNN without considering energy consumption and efficiency of resource utilization.
  4. This work presented the parallel neuromorphic processor architectures with approximate arithmetic for SNN on FPGA.

There is no related work part in this paper.


In-Datacenter Performance Analysis of a Tensor Processing Unit

Motivation

This paper evaluates a custom ASIC - called a Tensor Processing Unit (TPU) to accelerates the inference phase of neural networks (NN).

Problem

Many NN applications have hard response time deadline. Hence, inference phase must response quickly when user do some action. While CPU and GPU are poor in response.

All works are focus on hardware processing, such as DRAM, hardware protocol and so on.

转载于:https://www.cnblogs.com/wpqwpq/p/10574605.html

你可能感兴趣的文章
Node 中异常收集与监控
查看>>
七丶Python字典
查看>>
Excel-基本操作
查看>>
面对问题,如何去分析?(分析套路)
查看>>
Excel-逻辑函数
查看>>
面对问题,如何去分析?(日报问题)
查看>>
数据分析-业务知识
查看>>
nodejs vs python
查看>>
poj-1410 Intersection
查看>>
Java多线程基础(一)
查看>>
TCP粘包拆包问题
查看>>
Java中Runnable和Thread的区别
查看>>
SQL Server中利用正则表达式替换字符串
查看>>
POJ 1015 Jury Compromise(双塔dp)
查看>>
论三星输入法的好坏
查看>>
Linux 终端连接工具 XShell v6.0.01 企业便携版
查看>>
JS写一个简单日历
查看>>
LCA的两种求法
查看>>
Python 发 邮件
查看>>
mysql忘记密码的解决办法
查看>>